On Pairwise Intersections of the Fibonacci, Sierpiński, and Riesel Sequences

نویسندگان

  • Dan Ismailescu
  • Peter Seho Park
چکیده

A Sierpiński number is an odd integer k with the property that k ·2+1 is composite for all positive integer values of n. A Riesel number is defined similarly; the only difference is that k · 2 − 1 is composite for all positive integer values of n. In this paper we find Sierpiński and Riesel numbers among the terms of the wellknown Fibonacci sequence. These numbers are smaller than all previously constructed examples. We also find a 23-digit number which is simultaneously a Sierpiński and a Riesel number. This improves on the current record established by Filaseta, Finch and Kozek in 2008. Finally, we prove that there are infinitely many values of n such that the Fibonacci numbers Fn and Fn+1 are both Sierpiński numbers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Abelian Sequenceable Groups Involving ?-Covers

A non-abelian finite group is called sequenceable if for some positive integer , is -generated ( ) and there exist integers such that every element of is a term of the -step generalized Fibonacci sequence , , , . A remarkable application of this definition may be find on the study of random covers in the cryptography. The 2-step generalized sequences for the dihedral groups studi...

متن کامل

A Class of Convergent Series with Golden Ratio Based on Fibonacci Sequence

In this article, a class of convergent series based on Fibonacci sequence is introduced for which there is a golden ratio (i.e. $frac{1+sqrt 5}{2}),$ with respect to convergence analysis. A class of sequences are at first built using two consecutive numbers of Fibonacci sequence and, therefore,  new sequences have been used in order  to introduce a  new class of series. All properties of the se...

متن کامل

Toeplitz transforms of Fibonacci sequences

We introduce a matricial Toeplitz transform and prove that the Toeplitz transform of a second order recurrence sequence is another second order recurrence sequence. We investigate the injectivity of this transform and show how this distinguishes the Fibonacci sequence among other recurrence sequences. We then obtain new Fibonacci identities as an application of our transform.

متن کامل

Lucas-sierpiński and Lucas-riesel Numbers

In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of Lucas numbers. We also show that there are infinitely many Riesel numbers in the sequence of Lucas numbers. Finally, we show that there are infinitely many Lucas numbers that are not a sum of two prime powers.

متن کامل

On Powers Associated with Sierpiński Numbers, Riesel Numbers and Polignac’s Conjecture

We address conjectures of P. Erdős and conjectures of Y.-G. Chen concerning the numbers in the title. We obtain a variety of related results, including a new smallest positive integer that is simultaneously a Sierpiński number and a Riesel number and a proof that for every positive integer r, there is an integer k such that the numbers k, k2, k3, . . . , kr are simultaneously Sierpiński numbers.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013